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Fig. 1 Skin friction coefficient as a function of surface
curvature

1. From Egs. (38) and (52) of Yen and Toba’s paper, one
has
: n=—K7(l —e 3)

where n is the distance along a curvilinear coordinate line.
Therefore one obtains, from their Egs. (46) and (A-1), v =
Uif'/(1 + Kn), where vg is the velocity. In potential flow,
one gets from their Eq. (60)

Upot = Ul/(]- + KZ/) <4>

where ¥ is the distance normal to the surface. Since vy = u

and n = y, one has
= ¢" = u/upe (5)

Therefore ¢’ is the ratio of the velocity in the boundary-layer
flow to that in the potential flow on the same normal. Ex-
pressing Murphy’s f as F, one has, from Egs. (4) and (5)
and Murphy’s Eq. (30), dF/dy = 2f’/(1 4+ 2A7). Since
A = —2712C, one obtains from Eq. (3)

x = 271241 In(1 + 247) (6)

Thus one has F = 2V%f. Therefore Murphy’s Eq. (32) re-
duces to the present Eq. (2), which was derived from Yen
and Toba’s equation. Equation (6) shows that x = 0 at
7 = 0 and that x—> « when —> « for 4 > 0, or when n—
—(24)7 for A < 0. Therefore, the boundary conditions
for F also reduce to those for ¢. Thus it is clear that Mur-
phy’s and Yen’s analyses are essentially the same, and both
are correct.

For the purpose of numerical calculation, Eq. (2) is very
convenient. Indeed, with the transformations ¢ = ky,
x = kX, one has y’"’ 4 yy” = 0, together with boundary
conditions y(0) = 2C%7L, '(0) = 0, y'(») = k2 Thus, if
a solution ¥/, satisfying the initial conditions y(0) = e,
y'(0) = 0, 4"(0) = B, tends to v when X — «, then one can
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obtain a solution of Eq. (2) from the initial conditions
$(0) = 2C = ay™2 ¢'(0) = 0, and ¢"(0) = By~¥%. In
such a way, numerical solutions of Eq. (2) have been obtained
on an electronic digital computer Datatron 205. The
integration was done by using the Runge-Kutta method with
fourth-order accuracy. The interval of calculation is 0.01.
The variation of C; is plotted in Fig. 1, where the results of
Murphy and Yen and Toba and the line representing Tani’s
formula!

C; = 0.664 + 2.05C (7)

also are presented. In the range —0.1 < C < 0.1, Tani’s
formula is in good agreement with the present result. The
deviation of Murphy’s result from the present one may be
attributed to his questionable use of series expansion for the
determination of C;. Yen and Toba’s result seems to be
erroneous. It may be suspected that they started their
numerical caleulation from a point too near to the surface,
where their equation has a singularity, and that they used
integration steps that are too large for treating such an
equation.
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Some Physical Interpretations of
Magnetohydrodynamic Duect Flows

Fusiaiko Sakao*
University of Tokyo, Tokyo, Japan

HIS note presents some physical interpretations of

magnetohydrodynamic duct flows with various boundary
conditions viewed in the light of the effects of conducting
walls on the pattern of electric current, taking examples
from published results on rectangular ducts.!—* The cur-
rent patterns are illustrated in Fig. 1 for rectangular ducts
having various combinations of conducting and nonconduct-
ing walls, a uniform magnetic field being applied in the hori-
zontal direction.

There is an essential difference between the roles played
by horizontal and vertical conducting walls. A horizontal
conducting wall serves only as an electrode (cases A' and
B?) or as a short cut for the current (case D?). Therefore
the mechanism of flow resistance in case D remains essentially
the same as in a duct of nonconducting walls (case E3). On
the contrary, a vertical conducting wall acts essentially to
pass the current in the vertical direction outside of the fluid,
thus resulting in a net current in the fluid which makes a
primary contribution to flow resistance at large Hartmann
number M = Bya(o/n)V2.

Received by IAS June 29, 1962. The author is indebted to
Ttiro Tani for bringing the problem to his notice and for giving
him valuable advice. ‘
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Fig. 1 Patterns of electric current for constant flow rate
in square ducts with conducting (black) or nonconducting
(white) walls. Hartmann number M = Bua(c/7)¥? = 2,
where By, a, o, and 4 denote flux density of external mag-
netic field, half the length of a side of duct, conductivity,
and viscosity of fluid, respectively. The horizontal walls
are short-circuited in case B but unconnected in case D

&~ g © Fig. 2 Reciprocal of rate
of flow vs Hartmann num-
ber. Q(M) denotes the
volume rate of flow at
s o) Hartmann number M, and
Q(0) that at M= 0; (A)
Chang and Lundgen,! (B)
Tani,? (C) Lundgen, Ata-

beck, and Chang,+ (D)

o . 5 Tani,2 and (E) Shercliff?
© i
™

As a matter of fact, there is a strong resemblance between
cases A and B both in current pattern and flow rate (Figs. 1
and 2). Indeed, only 21 and 169, of the current (this per-
centage tending to zero as M or the height/breadth ratio of
the duct becomes infinitely large) comes from the vertical
walls in case A at Hartmann number M = 5 and 10, respec-
tively. (Thus Hartmann flow with conducting walls' is
exactly the same as with nonconducting walls with net
current.)

Although the current patterns in cases D and E are differ-
ent in the neighborhood of the horizontal walls, the flow rates
are expected to be only slightly different when M2 is large,
because the electric resistance to the current loop in the
boundary layer on the horizontal wall of case E is of the order
of MY, whereas the principal contribution of the order of
M comes from the boundary layer on the vertical wall in
both cases D and E.

Finally, case C* has the same mechanism of flow resistance
as cases A and B at large M, but the current loop in C suffers
electric resistance of the order of 32 in the boundary layer
on the horizontal wall. Thus the flow rate-for this. case
at large M may be expected to be similar to case A with the
conductivity of the fluid somewhat decreased.
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Unification of Matrix Methods of
Structural Analysis

FErnANDO VENANCIO FinnO*
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Nomenclature

column matrix of internal stresses

transformation matrix of unknowns into internal stresses

transformation matrix of external loads into internal
stresses

flexibility matrix of individual elements

column matrix of external loads

joint displacements

unknowns (forces or joint displacements)

transformation matrix of joint displacements into strains

stiffness matrix of individual elements

bifb,

bifbo

a‘ra

null matrix

transpose of a matrix

=
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Introduction

THE matrix methods of structural analysis which have
appeared recently in the literature are of two classes:
the Argyris method and the Klein method. The Argyris
method can be subdivided into those in which forces or de-
formations are taken as unknowns. This is stated clearly
in Ref. 1, where the basic references of the two methods are
mentioned.

In Ref. 2, Klein exposes the foundations of his method and
points out as one of his disadvantages: “Matrix is large.”
Later, in more recent works,% ¢ Klein advocates a pretri-
angularization of his initial equations to avoid that disad-
vantage. He also states that the ideal pretriangularization
is obtained when the redundant part of the structural sys-
tem isisolated. In this case the order of the matrix which has
to be inverted is much less than the order of the initial large
matrix.

The purpose of this note is to show that Argyris’ equations
are exactly Klein’s after the ideal pretriangularization is ob-
tained. This conclusion allows the unification of all meth-
ods of matrix structural analysis.

Theory

By the Argyris formulation, taking forces as unknowns,
the internal stresses and the joint displacements.of a struc-
ture submitted to external loads applied at the joints are,
respectively,’

8 = bk + X @
and
w = b'fS @
where X is given by
DX + DR = 0 )

Equations (1-3) can be written jointly in Table 1, where
(b1) and (bo) are, respectively, matrices b, and by in which the
rows corresponding to the independent internal stresses are
excluded, and (bef) is matrix bo¥f rearranged-so. that.columns.
referring to the independent internal stresses are written
first.
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